'; } else { echo "Sorry! You are Blocked from seeing the Ads"; } ?>
'; } else { echo "Sorry! You are Blocked from seeing the Ads"; } ?>
'; } else { echo "Sorry! You are Blocked from seeing the Ads"; } ?>

Physicists “cautiously optimistic” about CERN evidence for new funda


The big question was whether these anomalies would get stronger as more data was analyzed or melt away into nothing. In 2019, LHCb performed the same measurement of beauty quark decay again but with extra data taken in 2015 and 2016. But things weren’t much clearer than they’d been five years earlier.

New results

Today’s result doubles the existing dataset by adding the sample recorded in 2017 and 2018. To avoid accidentally introducing biases, the data was analysed “blind” — the scientists couldn’t see the result until all the procedures used in the measurement had been tested and reviewed.


Mitesh Patel, a particle physicist at Imperial College London and one of the leaders of the experiment, described the excitement he felt when the moment came to look at the result. “I was actually shaking”, he said, “I realized this was probably the most exciting thing I’ve done in my 20 years in particle physics.”


When the result came up on the screen, the anomaly was still there — around 85 muon decays for every 100 electron decays, but with a smaller uncertainty than before.


What will excite many physicists is that the uncertainty of the result is now over “three sigma” — scientists’ way of saying that there is only around a one in a thousand chance that the result is a random fluke of the data. Conventionally, particle physicists call anything over three sigma “evidence”. However, we are still a long way from a confirmed “discovery” or “observation” — that would require five sigma.


Theorists have shown it is possible to explain this anomaly (and others) by recognizing the existence of brand new particles that are influencing the ways in which the quarks decays. One possibility is a fundamental particle called a “Z prime” — in essence a carrier of a brand new force of nature. This force would be extremely weak, which is why we haven’t seen any signs of it until now, and would interact with electrons and muons differently.

Another option is the hypothetical “leptoquark” — a particle that has the unique ability to decay to quarks and leptons simultaneously and could be part of a larger puzzle that explains why we see the particles that we do in nature.

Interpreting the findings

So have we finally seen evidence of new physics? Well, maybe, maybe not. We do a lot of measurements at the LHC, so you might expect at least some of them to fall this far from the standard model. And we can never totally discount the possibility that there’s some bias in our experiment that we haven’t properly accounted for, even though this result has been checked extraordinarily thoroughly. Ultimately, the picture will only become clearer with more data. LHCb is currently undergoing a major upgrade to dramatically increase the rate it can record collisions.


Even if the anomaly persists, it will probably only be fully accepted once an independent experiment confirms the results. One exciting possibility is that we might be able to detect the new particles responsible for the effect being created directly in the collisions at the LHC. Meanwhile, the Belle II experiment in Japan should be able to make similar measurements.


What then, could this mean for the future of fundamental physics? If what we are seeing is really the harbinger of some new fundamental particles then it will finally be the breakthrough that physicists have been yearning for for decades.


We will have finally seen a part of the larger picture that lies beyond the standard model, which ultimately could allow us to unravel any number of established mysteries. These include the nature of the invisible dark matter that fills the universe, or the nature of the Higgs boson. It could even help theorists unify the fundamental particles and forces. Or, perhaps best of all, it could be pointing at something we have never even considered.


So, should we be excited? Yes, results like this don’t come around very often, the hunt is definitely on. But we should be cautious and humble too; extraordinary claims require extraordinary evidence. Only time and hard work will tell if we have finally seen the first glimmer of what lies beyond our current understanding of particle physics.


This article is republished from The Conversation under a Creative Commons license. Read the original article.





Source link

spot_imgspot_img

Subscribe

Related articles

First-Ever Live Stream from Mars: European Space Agency Makes History

Introduction In a groundbreaking achievement, the European Space Agency (ESA)...

Chandrayaan-3 Successfully Reaches Launch Port, Anticipation Builds for Upcoming Month’s Launch

India’s next lunar mission, Chandrayaan-3 spacecraft, has successfully reached...

NASA’s James Webb Telescope Reveals Mysterious Planet

Introduction NASA'S James Webb Telescope has just lately offered an...
spot_imgspot_img

Leave a reply

Please enter your comment!
Please enter your name here