There is still a lot unknown about the formation of our continents. We’re pretty sure that no other planet has the silica-rich continental masses that Earth possesses. Mars might have a little bit of what geologists call “evolved” rocks (in other words, more silica than basalt).
Venus could have a little bit as well. The Moon has anorthosite highlands that are a bit like continents except they formed from lighter minerals floating in a primordial magma ocean … that and those highlands are mostly all the same stuff.
No planet has the complex melange of volcanic rocks, sediment, metamorphic rocks and cooled magma that are Earth’s continents. The current theory, based on the ages of tiny zircon crystals found in Australia, is that our continents may have started forming over 4 billion years ago. However, whether they all formed quickly to close to their current size or have been slowly growing over time is an open question.
What makes continents so special?
Well, they are less dense and much thicker than the other flavour of plate on Earth, oceanic plates. Our ocean basins exist mainly because the crust underneath them are denser and thinner basalt plates, meaning they sit lower on the Earth’s ductile mantle (note: the Earth’s mantle is not made of molten magma). The continents, on the other hand, sit high because of their lower density and thicker profile, much like a volleyball sits higher in a pool than a tennis ball (a concept we call isostasy).
This difference does more than just create the different shapes of Earth’s surface. Continents are so buoyant that they can’t get shoved back into Earth’s mantle like the denser continental crust. Thus is born features like mountain belts formed from continental collision and subduction zones (and their volcanoes) where oceanic crust dives underneath continental crust.
The continents change as well. With plate tectonics comes the “supercontinent cycle” (also known as the Wilson Cycle) where continents collide to form massive supercontinents like Pangaea and then split apart over hundreds of millions of years. Today, the only thing we have close to a supercontinent is the amalgam of Europe, Asia and India.
The core of continents
The oldest parts of our continents are called cratons (and if those rocks are exposed at the surface, they’re called shields.) They represent the nucleus of each major continent, usually much smaller than the continent as a whole. These areas haven’t seen much in the ways of active tectonic processes like collisions or rifts for hundreds of millions to billions of years.
In North America, the craton stretches from northern Canada and Greenland (where the oldest rocks going back 3-4 billion years) to the south into Texas, but only parts of it are exposed at the surface. Most continents are more than just their cratons, so we know that the continents didn’t form all at once in the early history of the Earth. You can check out a map of the world’s cratons below to get a sense of the old cores of continents.
Editor’s Recommendations
- Unveiling the Brightest Quasar in the Universe! The Astonishing Quasar J0529-4351
- Unlocking the Secrets of Supermassive Black Hole Mergers: A Cosmic Tango of Giant Proportions
- Best Place to See 2024 Eclipse! After 7 years Total Solar Eclipse Coming to United States